Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 32(1): 125-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926713

RESUMO

ATP2B1 encodes plasma membrane calcium-transporting-ATPase1 and plays an essential role in maintaining intracellular calcium homeostasis that regulates diverse signaling pathways. Heterozygous de novo missense and truncating ATP2B1 variants are associated with a neurodevelopmental phenotype of variable expressivity. We describe a proband with distinctive craniofacial gestalt, Pierre-Robin sequence, neurodevelopmental and growth deficit, periventricular heterotopia, brachymesophalangy, cutaneous syndactyly, and persistent hypocalcemia from primary hypoparathyroidism. Proband-parent trio exome sequencing identified compound heterozygous ATP2B1 variants: a maternally inherited splice-site (c.3060+2 T > G) and paternally inherited missense c.2938 G > T; p.(Val980Leu). Reverse-transcription-PCR on the proband's fibroblast-derived mRNA showed aberrantly spliced ATP2B1 transcripts targeted for nonsense-mediated decay. All correctly-spliced ATP2B1 mRNA encoding p.(Val980Leu) functionally causes decreased cellular Ca2+ extrusion. Immunoblotting showed reduced fibroblast ATP2B1. We conclude that biallelic ATP2B1 variants are the likely cause of the proband's phenotype, strengthening the association of ATP2B1 as a neurodevelopmental gene and expanding the phenotypic characterization of a biallelic loss-of-function genotype.


Assuntos
Cálcio , Hipoparatireoidismo , Humanos , Cálcio/metabolismo , Fenótipo , Genótipo , RNA Mensageiro , Hipoparatireoidismo/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
2.
Brain Commun ; 5(1): fcad017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793789

RESUMO

Superoxide dismutase-1 is a ubiquitously expressed antioxidant enzyme. Mutations in SOD1 can cause amyotrophic lateral sclerosis, probably via a toxic gain-of-function involving protein aggregation and prion-like mechanisms. Recently, homozygosity for loss-of-function mutations in SOD1 has been reported in patients presenting with infantile-onset motor neuron disease. We explored the bodily effects of superoxide dismutase-1 enzymatic deficiency in eight children homozygous for the p.C112Wfs*11 truncating mutation. In addition to physical and imaging examinations, we collected blood, urine and skin fibroblast samples. We used a comprehensive panel of clinically established analyses to assess organ function and analysed oxidative stress markers, antioxidant compounds, and the characteristics of the mutant Superoxide dismutase-1. From around 8 months of age, all patients exhibited progressive signs of both upper and lower motor neuron dysfunction, cerebellar, brain stem, and frontal lobe atrophy and elevated plasma neurofilament concentration indicating ongoing axonal damage. The disease progression seemed to slow down over the following years. The p.C112Wfs*11 gene product is unstable, rapidly degraded and no aggregates were found in fibroblast. Most laboratory tests indicated normal organ integrity and only a few modest deviations were found. The patients displayed anaemia with shortened survival of erythrocytes containing decreased levels of reduced glutathione. A variety of other antioxidants and oxidant damage markers were within normal range. In conclusion, non-neuronal organs in humans show a remarkable tolerance to absence of Superoxide dismutase-1 enzymatic activity. The study highlights the enigmatic specific vulnerability of the motor system to both gain-of-function mutations in SOD1 and loss of the enzyme as in the here depicted infantile superoxide dismutase-1 deficiency syndrome.

3.
Am J Med Genet A ; 188(8): 2460-2465, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35642566

RESUMO

The phenotypic spectrum of SOX11-related Coffin-Siris syndrome (CSS) is expanding with reports of new associations. SOX11 is implicated in neurogenesis and inner ear development. Cochlear nerve deficiency, absence or hypoplasia, is commonly associated with cochlear canal stenosis or with CHARGE syndrome, a monogenic condition that affects inner ear development. SOX11 is a transcription factor essential for neuronal identity, highly correlated with the expression of CHD7, which regulates SOX11. We present two unrelated probands, each with novel de novo SOX11 likely pathogenic variants and phenotypic manifestations of CSS including global developmental delay, growth deficiency, and hypoplastic nails. They have unilateral sensorineural hearing loss due to cochlear nerve deficiency confirmed on MRI. SOX11 is implicated in sensory neuron survival and maturation. It is highly expressed in the developing inner ear. Homozygous ablation of SOX11 in a mouse model resulted in a reduction in sensory neuron survival and decreased axonal growth. A heterozygous knockout mice model had hearing impairment with grossly normal inner ear structures like the two probands reported. We propose cochlear nerve deficiency as a new phenotypic feature of SOX11-related CSS. Magnetic resonance imaging is useful in delineating the cochlear nerve deficiency and other CSS-related brain malformations.


Assuntos
Síndrome CHARGE , Deformidades Congênitas da Mão , Perda Auditiva Neurossensorial , Micrognatismo , Anormalidades Múltiplas , Animais , Nervo Coclear , Face/anormalidades , Deformidades Congênitas da Mão/genética , Perda Auditiva Neurossensorial/genética , Deficiência Intelectual , Camundongos , Micrognatismo/genética , Pescoço/anormalidades , Fatores de Transcrição SOXC
4.
Am J Med Genet A ; 188(4): 1299-1306, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34970864

RESUMO

The beta-actin gene (ACTB) encodes a ubiquitous cytoskeletal protein, essential for embryonic development in humans. De novo heterozygous missense variants in the ACTB are implicated in causing Baraitser-Winter cerebrofrontofacial syndrome (BWCFFS; MIM#243310). ACTB pathogenic variants are rarely associated with intestinal malformations. We report on a rare case of monozygotic twins presenting with proximal small bowel atresia and hydrops in one, and apple-peel bowel atresia and laryngeal dysgenesis in the other. The twin with hydrops could not be resuscitated. Intensive and surgical care was provided to the surviving twin. Rapid trio genome sequencing identified a de novo missense variant in ACTB (NM_00101.3:c.1043C>T; p.(Ser348Leu)) that guided the care plan. The identical variant subsequently was identified in the demised twin. To characterize the functional effect, the variant was recreated as a pseudoheterozygote in a haploid wild-type S. cerevisiae strain. There was an obvious growth defect of the yACT1S348L/WT pseudoheterozygote compared to a yACT1WT/WT strain when grown at 22°C but not when grown at 30°C, consistent with the yACT1 S348L variant having a functional defect that is dominant over the wild-type allele. The functional results provide supporting evidence that the Ser348Leu variant is likely to be a pathogenic variant, including being associated with intestinal malformations in BWCFFS, and can demonstrate variable expressivity within monozygotic twins.


Assuntos
Atresia Intestinal , Gêmeos Monozigóticos , Actinas/genética , Actinas/metabolismo , Variação Biológica da População , Anormalidades Craniofaciais , Edema , Epilepsia , Facies , Humanos , Deficiência Intelectual , Atresia Intestinal/diagnóstico , Atresia Intestinal/genética , Lisencefalia , Saccharomyces cerevisiae/metabolismo , Gêmeos Monozigóticos/genética
5.
J Hum Genet ; 67(1): 19-26, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34244600

RESUMO

Protein arginine N-methyltransferase 7 (PRMT7) encodes an arginine methyltransferase central to a number of fundamental biological processes, mutations in which result in an autosomal recessive developmental disorder characterized by short stature, brachydactyly, intellectual developmental disability and seizures (SBIDDS). To date, fewer than 15 patients with biallelic mutations in PRMT7 have been documented. Here we report brothers from a consanguineous Iraqi family presenting with a developmental disorder characterized by global developmental delay, shortened stature, facial dysmorphisms, brachydactyly, and kidney dysfunction. In both affected brothers, whole genome sequencing (WGS) identified a novel homozygous substitution in PRMT7 (ENST00000339507.5), c.1097 G > A (p.Cys366Tyr), considered to account for the majority of the phenotypic presentation. Rare compound heterozygous mutations in the dysplasia-associated perlecan-encoding HSPG2 gene (ENST00000374695.3) were also found (c.10721-2dupA, p.Ser71Asn and c.212 G > A), potentially accounting for the kidney dysfunction. In addition to expanding the known mutational spectrum of variably expressive PRMT7 mutations alongside potential digenic inheritance with HSPG2, this report underlines the diagnostic utility of a WGS-guided analysis in the detection of rare genetic disorders.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Fenótipo , Proteína-Arginina N-Metiltransferases/genética , Alelos , Consanguinidade , Estudos de Associação Genética/métodos , Genótipo , Humanos , Iraque
6.
Dev Med Child Neurol ; 63(12): 1483-1486, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34155623

RESUMO

Aicardi-Goutières syndrome (AGS) is a rare genetic neuroinflammatory disorder caused by abnormal upregulation of type 1 interferon signalling. Opsoclonus-myoclonus syndrome is a rare autoimmune phenotype demonstrating a disturbance in the humoral immune response mostly seen in the context of paraneoplastic or postinfectious states, although its pathophysiology is incompletely understood. We report the first three children described with AGS demonstrating transient opsoclonus and myoclonus after irritability and/or developmental regression, suggesting a pathological association. We describe the presentation, clinical features, progress, cerebrospinal fluid (CSF) inflammatory markers, electroencephalogram (EEG), and magnetic resonance imaging (MRI) findings in these children. Two patients had developmental regression but demonstrated a positive response to JAK1/2 inhibition clinically and on serial examination of CSF inflammatory markers. These findings suggest that AGS should be considered in children presenting with opsoclonus-myoclonus, and that the association between AGS and opsoclonus-myoclonus further supports the role of immune dysregulation as causal in the rare neurological phenomenon opsoclonus and myoclonus. What this paper adds There is a phenotypic association between opsoclonus-myoclonus syndrome and Aicardi-Goutières syndrome. There is clinical evidence of immune dysregulation in the pathogenesis of opsoclonus and myoclonus.


Assuntos
Doenças Autoimunes do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/complicações , Síndrome de Opsoclonia-Mioclonia/complicações , Doenças Autoimunes do Sistema Nervoso/líquido cefalorraquidiano , Doenças Autoimunes do Sistema Nervoso/diagnóstico por imagem , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Neopterina/líquido cefalorraquidiano , Malformações do Sistema Nervoso/líquido cefalorraquidiano , Malformações do Sistema Nervoso/diagnóstico por imagem , Síndrome de Opsoclonia-Mioclonia/líquido cefalorraquidiano , Síndrome de Opsoclonia-Mioclonia/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...